Acid pH activation of the PmrA/PmrB two-component regulatory system of Salmonella enterica
نویسندگان
چکیده
Acid pH often triggers changes in gene expression. However, little is known about the identity of the gene products that sense fluctuations in extracytoplasmic pH. The Gram-negative pathogen Salmonella enterica serovar Typhimurium experiences a number of acidic environments both inside and outside animal hosts. Growth in mild acid (pH 5.8) promotes transcription of genes activated by the response regulator PmrA, but the signalling pathway(s) that mediates this response has thus far remained unexplored. Here we report that this activation requires both PmrA's cognate sensor kinase PmrB, which had been previously shown to respond to Fe(3+) and Al(3+), and PmrA's post-translational activator PmrD. Substitution of a conserved histidine or of either one of four conserved glutamic acid residues in the periplasmic domain of PmrB severely decreased or abolished the mild acid-promoted transcription of PmrA-activated genes. The PmrA/PmrB system controls lipopolysaccharide modifications mediating resistance to the antibiotic polymyxin B. Wild-type Salmonella grown at pH 5.8 were > 100 000-fold more resistant to polymyxin B than organisms grown at pH 7.7. Our results suggest that protonation of the PmrB periplasmic histidine and/or of the glutamic acid residues activate the PmrA protein, and that mild acid promotes cellular changes resulting in polymyxin B resistance.
منابع مشابه
Identification and functional analysis of Salmonella enterica serovar Typhimurium PmrA-regulated genes.
The PmrA-PmrB two-component regulatory system of Salmonella enterica serovar Typhimurium is activated in vivo and plays an important role in resistance to cationic antimicrobial peptides. Resistance is partly mediated by modifications to the lipopolysaccharide. To identify new PmrA-regulated genes, microarray analysis was undertaken comparing cDNA derived from PmrA-constitutive and PmrA-null st...
متن کاملHeadliners: Neurological Disease: Neural Protein May Stop the Progression of Alzheimer Disease
Acid pH often triggers changes in gene expression. However, little is known about the identity of the gene products that sense fluctuations in extracytoplasmic pH. The Gram-negative pathogen Salmonella enterica serovar Typhimurium experiences a number of acidic environments both inside and outside animal hosts. Growth in mild acid (pH 5.8) promotes transcription of genes activated by the respon...
متن کاملAncestral Genes Can Control the Ability of Horizontally Acquired Loci to Confer New Traits
Horizontally acquired genes typically function as autonomous units conferring new abilities when introduced into different species. However, we reasoned that proteins preexisting in an organism might constrain the functionality of a horizontally acquired gene product if it operates on an ancestral pathway. Here, we determine how the horizontally acquired pmrD gene product activates the ancestra...
متن کاملGenetic analysis of colistin resistance in Salmonella enterica serovar Typhimurium.
Colistin is a cyclic cationic peptide that kills gram-negative bacteria by interacting with and disrupting the outer membrane. We isolated 44 independent mutants in Salmonella enterica serovar Typhimurium with reduced susceptibility to colistin and identified 27 different missense mutations located in the pmrA and pmrB genes (encoding the regulator and sensor of a two-component regulatory syste...
متن کاملTwo-component regulatory systems can interact to process multiple environmental signals.
The PhoP/PhoQ two-component system of Salmonella typhimurium governs transcription of some 25 loci in response to the extracellular concentration of Mg2+. We have now identified one of these loci as pmrCAB, which codes for a two-component system that mediates resistance to the antibiotic polymyxin B. Transcription of seven of 25 PhoP-activated loci was dependent on a functional PmrA protein, th...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Molecular Microbiology
دوره 63 شماره
صفحات -
تاریخ انتشار 2007